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FOREWORD

This report was prepared by the Wright Air Development Division as a formal record
of the complete structural test program for thc F~106A airplane. The structural tests
reported were conducted by the Engineering Test Division, Flight und Engineering Tesat
Group, Wright Air Development Division, Wright-Patterson Air Force Base, Ohlo, with
Mr. Saword Lustig acting as Project Test Engineer; Mr. David W. Jacksonresponsible
fc - the heating methods used, and Mr. Fraderick E. Hussong responsible for all instru-
mentation.
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ABSTRACT

The F-1C6 ' airplan was subiected to a complete static test program covering all of
ihe critical fiir't, landing and ground handling cordirions. The F-106B was also qualified
on the basis «f rhese tests because of = structural similarity. The test loads used were
u-. maximu lcads for either the F-105A or B. The entire structure supported the
reqrived ulthmate loads without modification for all conditions including conditions for
which the gross weights were increased over the original design gross weights. The wing
and elevon each sustained one minor local failure at a high load ievel. In both cases the
aicpiore continued to support ultimate load deapite these fallures. Recommendations are
tuciwded for structural changes necessary to eliminate the above mentioned deficiencies,

PUBLICATION REVIEW

This report has been reviewed and is approved.
FOR THE COMMANDER:

Approved by:
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INTRCDUCTION

This report presents the results of the structural tests conducted on the complete air-
frame of the C mvair F-106A airplane. These tests are of particular interest because
they represent tnc first effort at a full scale elevated temperature structural test pro-
gram. This means that aerodynamic heating of one complete wing was simulated for the
temperature critical conlitioas, and simulated engine heat was applied throughout the
entire engine compartment for all aft fuselage critical conditions. Several entirely new
methods of load application were used for the first time to properly accomplish the
elevated temperature tests. It was also necessary to simulate cold fuel in the wing fuel
tanks to duplicate the temperature gradiems required for the wing heat tests. Instru-
mentation requirements were satisfied by the use of elevated temperature ‘‘bukelite’’
strain gages and capacitance welded thermvxcouples.

PRELIMINARY CONSIDERATICONS

Prior to legimning the F-106 static test program, it was decided to test only the F-100A
airplene and consider these tests as also representing substamtiation for the F-106B. The
two airplanes are structurally similar except for th2 cockpit area of the turward fuselage,
the F-106A is a single seat and the F-106B a two seat airplane. Tke test loads required
for any condition would be the higher of either the F-106A or F-106B. To expedite the
program, it was also decided that the static test airplane would have the then available
Case XIV wing which is identical structurally to the production Case XXIX wing except
in the leading edge area which is structurally siinilar.

Actuating cylinders for such items as the armament doors and landing gear fairing
doors are pneumatically operated on the F-106 aircraft. For coanvenience in testing, all
actuating systems were converted to hydraulic operation for the static test article onl,.
This enabled the existing hydraulic system at the WADD structural test facility to apply
the proper pressures to the actuating cylinders for all conditions that required loading
or reacting pressures in the cylinders.

Immediately after the: decision was made to include among the F-106A static tests
full scale elevated temperature tests, s method for loeding the heated wing had to be
decided upon. The standard method of applying load through ner ~ene rubber tension
pads would not sufficc due to the fact that the bonding materials used will not withstand
temperatures much above ambient room tempcerature. At the time a decision had to be
made, there was no known high temperature tension pad at a usable state of development.
It was therefore decided to have special fittings built into the basic structure t> which
load could be applied directly. In this case, such an approach was relatively convenient
in view of the fact that mecdt of the F-100 wing is of standard built-up rib and spar
construction tied together with standard fasteners. A more detailed description of the
lcad fittings used and their method of attachment will follow in succeeding paragraphs.

TEST ARTICLE AND LOAD APPLICATION METHODS

The test article consisted of a complete F-106A airframe and integral pylon-tank. All
major structural tests were conducted using a floating test set-up (reference typical test

Manuscript released by the author 10 February 1960 for publication as a WADD Technical
Report.
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photograph, Figure 1). In this procedure the entire airframe is tested as one integral

unit with the dead weight of the structure and all attached test fixtures relieved by lead
weights suspended from pulleys and attached to the test article. This caused the airframe
to float at 0 g’s; all test loads were required to be uniformly applied and pecrfectly bal-
anced in translation and roll, pitch, and yaw.

The wings and elevons were loaded primarily through fittings integrated with the basic
structure. The basic wing had specific spar boits replaced with a special bolt-stud com-
binazion fitting (reference Figure 2). The elevons, wing tips, and ieading edges had tabs
welded or riveted to each rib with studs screwed into the tabs and protruding through the
skin (reference Figures 3 and 4). The internal tab attachments for the leading edge can
be seen in Figure 5. Cables were attached to each of these loading studs and groups of
cables were intercomected by means of steel or aluminum ‘‘whiffle trees’’. All loads
were hydraulically applied. For most major conditions the load fittings in portions of the
leading edges, wing tips and elevons were irsufficient for the magnitude of load or were
not arranged 80 as to be able to attain the p.ui«:: center of pressure for the applied loads.
This was brought about by the fact that the load :.iting design had to be completed and
fabrication begun befure t:: basic loads were finalized. In such cases it was necessary
to supplement the load fittings with tension patches bonded to the surfaces. Neoprene
sponge rubber tension pads were used for room temperature tests. For elevated tempera-
ture tests it was necessary to uze metal-to-metal tension plates bonded to the surfaces
with Dow-Corning RTV Silastic. Fuselage loads were applied hydraulically through
riveted or bonded shear straps and tension pads. Here again, Silastic bonded shear straps
or tendion pads were used for elevated temperature tests. The fin loads were applied at
room temperature only axd therefore loads were primarily spplied through n=op1cne
rubber tension pads; huwever, for conditions with simulated engine heat, the lower portion
of the fin became hot enough to require Silastic tension pads. Test load application was
accomplished with Edison hydrsulic presscre control units and manual hydraulic control
units. The manual units «zxe primarily used for control of iuherem pitch, roll, or yaw
in the floating test set-up.

INSTRUMENTATION

The aircraft was instrumented by Convair-San Diego in accordance with WADD
structural testing requirements. Additional strain gages and thermocouples were added
at WADD during the test program. Sensing elements consisted of Baldwin-Lima-Hamilton
Corporation SR-4 Bakelite type bonded wire strain gages at spproximately 484 locations.
Strain gages were incorporated into modified Wheatstone bridge circuits and wired for
sensitivity to axial, bending and shear strains. Thermocouples were capacitance welded
to the structure at all accessible locations. Junctions inaccessible for welding techniques
were cemented with aluminum filled epoxy cemen.

Bridge outputs were recorded by Gilmore Industries Model 114 high speed 144 channel
sirain gage graphical plotter. Switching was done through three modified Nosker strain
indicators. Multiple passes of the chart paper through the recorder resulted in a plot of
strain versus percent ultimate i»axdi. Speed of operation with this instrument is one channel
per second. Sensitivity may be varied £ om 2000 to 20,000 micro-inches per irnch full
scale. Portable SR-4 strain indicators were used for manually recording outputs of 240
ohm bridges as well as monitoring compression load cells and tension straps. Thermo-
couples were recorixd manually during steady state soak temperature conditions using a
modified 84 channel Brown self-balancing pyrometer potentiometer. Control thermo-
couples were recorded by single channel Brown self balancing pyrometer recorders. Hot

2
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wing transient } sating condition temperatures were recorded on Century Model 408
oscillographs.

A detailed description of recording instruments, transducer characteristics, method of
instaliation, electrical wiring circuiis, rype of output information and transducer locarions
on the aircraft are on file in the WADD Structural Test Facility (WWFESS).

ELEVATED TEMPERATURE APPLICATION

Thermal loads, in addition to the mechanically induced static test loads, were introduced
for those test conditions summarized in Table 1 of the Appendix. Two thermal simula-
tions were sought in these tests, i.e., (1) the steady state conditions which were specified
for the engine compartment, and (2) the transient conditions which were specified for wing
heating. No a.tempt was made to introduce the combined effects of engine compartment
and wing heating during the course of these .ests, due nrimarily to the limited amount of
power distribution equipment available for use,

Radiant heating techniques were utilized for both *ypes of thermal simulation. The basic
heating elements used were General Electric 1000T3/CL infrared heating lamps. These
lamps were mounted on aluminum alloy reflector units specially fabricated and contoured
to the surface being heated. Comments relative to the elevated temperature testing will
pertain first to the engine compartment {(or steady state) heating and secondly, to the wing
(or transient) heating conditions.

Early discussions between WADD and Convair personnel led to the concept of simulating
engine heat by means of a dummy engine (ur can) heated from within with radiant heating
elements 50 as to provide the required temperature distributions, After examination of
the dummy engine fixture, it was concluded that the large thermal inertias involved would
make control extremely difficult. This approach was therefore abandoned in favor of
mounting the lamps to reflector ... ~ 50 arranged as to introduce the heat flux directly to
the inside flange of the bulkbead framea and to the inside surfaces of the stiffened skins
between the bulkheads,

To arrive at a reasonable lamp distribution for the frames, the frame cross-sectional
areas, width of flange, depth of frame normal to the inside flenge, and frame materials
were considered. Thermocoupies were mounted on 15 points on the flanges of the bulk-
head located at Fuselage Station 520.0 and at 8 locations on the remaining frame stations.
T-3 lamps were attached to brackets mounted from the inner flanges of the frames so that
the axis of the lamps followed the contour of the flange, that is, perpendicular to the engire
thrust line. Reflectors were then attached to the mounting brackets so as to reflect the
radiant flux towards the frame flanges. Figure 6 portrays the arrangement of the heating
elements and reflector units. Calculated distributions were good only for first approxi-
mations and actual lamp distributions deyended on a ‘‘cut-and-try’’ technique.

Heating of the bay areas between the bulkheads was accomplished by mounting the
heating lamps directly vo reflector units which were contoured to hold the elements
approximatsly four inches from the surfaces to be heated. Supporting brackets for the
aluminum alloy skeet reflectors were mounted by means of bolting to fuselage fittings,
utilizing numerous pilot holes as attach points, Contro} thermocouples for the bay areas
and frames were located in areas selected symmetrically on either side of center (an
unfortunate choice since compensation for conduction effects could have been better
controlled by using vertical increments, i.e., control thermocouples at top and botrom).

3
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T'he temperature distribution sought in the engine compartment £ the applicable test
conditions and the temperatures actually achieved during the tests are summarized in
Table 2 of the Appendix. Details of the thermocouple locations are on file in the WADD
Structural Test Facility (WWFESS). During th~ initial test conditions (15 through 1404-B)
the maximum temperatures in the compartment were held at or below he maximum
specified for the given test conditions. Several of the thermocouple readings were sub-
stantially below the desired temperature, During the final phases (Conditions 2502 and
5095), an attempt was made to bracket the required soak temperatures, except that
temperatures were held to a maximum of 20°F. in excess of thoge required.

Wing heat tests were conducted by introducing transient heating conditions. Fuel condi-
tions were specified for the purpose of maxiniizing thermally induced stresses. Bothwings
were identically gaged (strain and deflection) although ouly the left wing was subjected to
heating. This instrumentation duplication was for the purpose of assisting in differenti-
ating between thermally and mechanically induced stresses,

The wing refiectors were formed to the wing contours and supported by means of inverted
hat fittings which were fastened to the contractor-installed panel point load fittings. The
leading edge reflectors were bent to the required contour and were held to shape by means
of aluminum alloy sheet cut to fit and clipped to the reflector oy rolling the reflector edges,
and by the installed baffles (intended to localize the heat flux being distributed to the
selected contro! areas). Those reflectors over flat surfaces were stiffened by means of
1 x 1 inch “T"’ extruded material and by means of the spar baffles. The reflector units
were fabricated in convenient sizes to faciliate installation and removal of individual
reflecror units as required. Lamp spacings over tne wing surfaces were calculated based
on equivalent skin thicknesses and calculated temperature rise rates. Fuel areas required
consideration of the quantity of heat absorbed by the fuel simulant (ethelyn-glycol and
water mixture), This was estimated by the contractor to be approximately 50 percent of
the heat flux intrcduced to the wing surface. In consideration of the power available for
distribution and a reasonable breakdown of control areas, it was decided to eliminate
thermal loading of the elevons. The 40 control areas were distributed, 19 to the upper
surface and 21 ro the lower surface. Both the upper and lower wing surfaces were
divided into control areas as follows: The area forward of Spar Nr. 1 was broken into
two control areas, the wing tip one control area, the spars and root areas eight control
areas, and the remaining wing areas taking up the remaining apportioned controllers for
each of the upper and lower surfaces. Control areas and monitoring thermocouple loca-
tions may be found in detail in the WADD Structural Test Facility files (WWFESS).

The required transient wing heating conditions were programmed through the WADD
heat computers. These computers, used with the saturable reactor controls, continuously
compute and control the thermal input to each of the selected control areas in accordance
with the following convective heat transfer and power control equations:

Q = B(T,, - Ty (H
Where: Q = Rate of heat transferred (BTU/hr-ft2)
h = Thermal convective heat transfer

coefficient (B’I’U/hr-ft2 in°F.)

Taw = Adiabatic wall or recovery temperature (°F.)
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T, = Actual skin or surface temperature (°F.)
and
Q = KEI (2)
Where: K = Multiplier which includes a series of factors
peculiar to the computer-controller operation
(nondimensional)

E = Lire voltage

1 = Line amperage

Tvwo conditions were selected by the Contractor as representing the most severe transient
thermal conditions to be encountered in actual flight: (1) a 60-degree, 21-second power
dive from M = 1.3 at 60,000 feet to M = 1.895 at 30,000 feet followed by an extended cruise
under the latter condition for an additional 60 seconds; and (2) a 234-second level flight
acceleration from M = 1.0 to M = 2.0 at 35,000 feet followed by an additional 60-second
cruise at M = 2.0,

For the purpose of these tests the wing was divided into zones as indicated in Ficure 7
wherein the variance of the convective heat transfer coefficient was not over 10 percent.
Computer input functions for the wing tests required time dependent thermal heat transfer
(h) functions for each of the 40 selected control areas. These h functions were related to
the distances aft of the leading edge of the wing as determined by control thermocouple -
placements. The control thermocouples provided the skin temperature feedback required
for computer solutions of Equation 1. The recovery tempe.atures input functions for the
test conditions were in the formr of contractor-furnished boundary layer temperature
versus time curves. Calculated boundary layer temperatures, flux requirements, thermal
keat transfer coefficients, and predicted skin temperatures for the fuel and dry skin
conditions are graphically portrayed in Figures 8A through 8G for the 60-degree power
dive condition, and Figures 9A through ¥G for th- level flight acceleration condition.

Fuel simulation for the foregoing conditions was accomplished by introducing a water-
ethylene glycol mixture to the tanks. The simulated fuel was precooled by means of solid
carbon dioxide blocks dropped into the mixture beld in an external storage container.
Cooling was continued to a level several degreea below the required initial wing tempera-
ture prior to being pumped into the wing. This allowed for subsequent heat exchange be-
tween the fluid and the structure. Each of the four wing fuel tanks was independently filled
for accurate fuel level control. The fuel level was of extreme importance since the fuel
was not to touch the upper wing skin at any time and was to be {n contact with the lower
wing skin at all times. This was necessary to prevent the control thermocouples from
feeding erroneous information to the computers. For example, if some cold fuel simulant
was in contact with a small upper surface area that happened to contain a control thermo-
couple, that entire control area would be subjected to overheating because most of that
area would actually be ‘‘dry’’ and a great deal warmer than the control thermocouple
would izdicate. The reverse situation would be true if the fuel simulant did not contact .1l
lower surface control points. Independent venting of each fuel tank was necessary to pre-
vent overpressurization of the tanks from escaping OO2 gases from the fuel simulant.
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The arbitrarily selected thermas! load!ng conditions were superimposed upon Loading
Conditions 1705 and 1407. No attempt was made to program the loads i» accordance with
a flight plaa related to the thermal conditions imposed. Incremental load'~ techniques
were used for both wing conditions investigated, except that differing methuds were used
in applying the final 10 percent load increment. For the condition where the 60-degree
power dive thermal simulation was used, the mechanically induced loads were introduced
incrementally up to the maximum load level desired (limit or ultimate); this load level
was mainiained while the entire heathg cycle was introduced (80 seconds), and then the
10ads were incrementally reduced. For the level flight acceleration thermal simulation
(300 seconds), the heatiitg cycle was started after stabilizing at 90 percent of ultimaie
load. After approximately 100-seconds elapsed time of the heating cycle, the final 10 per-
cent load increment was introduced (without interruption of the heating cycle) and held to
the end of the 300-second run. At the end of the run the mechanical loads were incremen-
tally reduced.

A detailed evaluation of the thermocouple data has not been accompliehed; however,
cursory examination of the data reveals a reasonable correlation with theoretical cal-
culated results (some of which were experimentally verified under controlled conditions,
i.e., water box fuel simulation). In those cases where an appreciable error appeared to
exist between calculated and actual results, the apparent error could usually be attributed
to: (1) recording instrument error resulting from either instrument malfunction or cali-
bration error, (2) location of the thermocouple in an area of an uncompensated heat sink
or in an area lacking a compensated heat sink (i.e., the fuel level changed somewhat in -
the fuel compartments due to structural deformations and translations), and/or inter-
action between heating areas (that is, thermocouples driven by heat flux from adjacent
areas). Temperature data for both of the transient wing conditions were recorded by
means of strip charts (Brown Electronik Recorders) and oscillograph recorders. This
data is available at the Wright Air Development Division, (WWFESS), Wright-Patterson
Air Force Base, Ohio, for review by intereste-1 and qualified requesters.

TEST CONDITIONS, DATES OF TEST, AND SUMMARY OF TEST RESULTS

The F-106A was tested for the conditions listed below:

Percent
Test Ult, Load
Sequence F-106A Test Condition Test Date Supported

1  Canopy and Cockpit Ground Pressurization 2 December 1957 100

2 Rudder Controls Conditions 7, 8, and 9 4 December 1957 100
3  Rudder Fesl Sysiem 4 December 1957 100
4  Elevator Controls System Condition 4 S December 1957 100
5 Elevator Controls System Conditions,

1,2,3,%5 6 December 1957 100
6  Elevator Feel System Conditions 1 and 3 S December 1957 100
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Percent

Test Ult. Load

Sequencc F-106A T=st Condition Test Date Supported
7  Aileron Controls System Conditions 2, 3, & 4 9 December 1957 100
8 Power ControlsSubsystem Conditions 1,2,&3 10 December 1957 1C0
9  Condition 1602 25 March 1958 100
10  Condition 1610 2 April 1958 100
11  Condition 1604 10 April 1958 100
12 Condition 1704 24 April 1958 100
13 Condition 5 21 May 1958 100
14  Condition 15 5 June 1958 100
15 Falcon Launcher Condition 1 (Retracted) 26 June 1938 100
16  Drag Chute (at 18 Degrees) 27 June 1958 100
17 Drag Chute (at -5 Degrees) 30 June 1958 100
18 Ram Air Tursine Door Condition 1-C 3 July 1958 100
19  Ram Air Turbine Door Condition 3 3 July 1558 100
20  Condition 19 (With Engine Heat) 10 July 1958 1¢0
21  Condition 2 (With Engine Heat) 24 July 1958 100
22 Condition 19 - F-1063 (With Engine Heat) 31 July 1958 100

23 Condition 1904 12 August 1958 100(97)
24  Condition 1806 (With Engine Heat) 20 August 1958 160
25  Condition 1902 26 August 1958 100
26  Condition 1404 - F~106B (With Engine Heat) 3 September 1958 100
27  Armament Doors Co:dition 2 2 October 1958 100
28  Armament Doors Condition 8 10 October 1458 100
29  Armament Dcors Condition 13C 16 Gctober 1958 100
30  Armament Doors Condition 14C 17 Qctober 1958 100
31  Speed Brakes - 50 Degrees Open 21 Qctober 1958 100

7




Test
Sequence

32
33
34
35

37
38
39

41
42
43

44

45

47
48

49

51
52

&

F-106A Test Condition

ECP 4056 Controls - Rudder Condition S
ECP 4056 Controls - Rudder Cundition 7
ECP 4056 Controls - Rudder Condition 9
EC® 4056 Controls - Brake Conditlon 3
ECF 4056 Controls - Elevator Condition 3
ECP 4056 Controls - Elevator Condition 4
ECP 4056 Coatrols - Elevator Condition 2
ECP 4CC. Controls - Elevator Condition 5
ECP 4056 Controls ~ Aileron Condition 2
ECP 4056 Controls - Aileron Condition 3
ECP 4056 Controls - Aileron Condition 4

MainL anding Gear Wing Fairing Door
Condition 6

Main Landing Gear Wing Fairing Door
Cowdition 7B

Nose Landing Gear - Three-Wheel Level
Landing

Nose Landing Gear - Spin Up
Nose Landing Gear - Spring Back

Main Landing Gear Dcirs - Closed - Wing
And Fuselage

Nose Landing Gear Door - Closed
Pilot Seas - Downward Crash
GAR Launcher - Retracte

GAR Launcher - Crash

Condition 1705 (With Wing Heat)
Condition 1407 (With Wing Heat)

WADD TR 60-477

Test Date
» November 1958
7 November 1958
7 November 1958
7 November 1958
12 Novemuer 1958
12 November 1958

13 November 1958

‘13 November 1958

14 November 1958
14 November 1958
14 November 1958

24 November 1958

25 November 1958

26 November 1958
28 November 1958

1 December 1958

2 December 1958
3 December 1958
4 December 1958
4 December 1958
5 December 1958
12 December 1958

17 December 1958

Percent
Ult, Load
Supported

185
100
100
HY
105
100
100
100
100
100

100

100

100

100
100
100

100

100
160
100

100
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Perceat
Test Ult. Load
Sequence F-i06A Test Condition Test Date Supported
55 Nose Landing Gear - Towing Aft 31 December 1958 1060
56 Nose Landing Gear ~ Towing Forward 5 January 1959 100
57 Nose Landing Gear - Unsymmetrical Brakiag 6 January 1959 100
58  Main Landing Gear - Taxi 8 January 1959 100
59  MainLanding Gear - Side Drift Owboard 12 January 1959 109
60 Main Landing Gear ~ Side Drift Inbvard 12 January 1939 100
61  Main Landing Gear - Side Dirift with
Spring-Back 14 January 1959 100
62 Nose Landing Gear - Towing 45 Degrees Aft 16 January 1959 100
63  Main Landing Gear - Two-Wheel Spin-Up 20 January 1959 100
64 Main Landing Gear - Two-Wheel
Spin-Up (Tail Down) 21 January 1959 100
65 Main Landing Gear ~ Two-Wheel Spin-Up
(Tail Down Side Load) 21 January 1959 100
96  Main Landing Gear - Two-Wheel Spring-
Back (Tail Down) 23 January 1959 100
67 Main Landing Gear ~ Two-Wheel Spring-
Back (Tail Down Side Load) 23 January 1959 100
68  Mair Landing Gear - Braked Roll 26 January 1959 100
69  Main Landing Gear - Turning 27 January 1959 100
70  Main Landing Gear - Pivoting 27 January 1959 100
71  Main Landing Gear - Side Drift with
Spin-Up 28 January 1959 100
f 72  Main Landing Gear - Mooring Fitting 28 January 1959 100
73  Main Landing Gear - Jacking 29 January 1959 100
74  Condition 2502 (L.F)) 6 February 1957 100
75  Condition 3202 (1..) 12 February 1959 100
76  Conditior 3005 (I.F.) 19 February 1389 100
9




Test
Sequener

77
78
79
80
81
82
83
B84
85
86
87

92
93
94
95
96
97
98

100

101
10

FP-136A Test Condition
Condition 4 (LF.)
MLG Fuselage Fairing Door - Conditlon 3
NLG Door - Cpen and Locked
Pilot Seat - Forward Crash
Pilot Seat - Side Crash
Pilot Seat ~ Catapult Load
Pilot Seat - Forward Crash (32g)
Falcon Launcher - Conditior: 7
Falcon Launcher - Condition 7A
Falton Launcher ~ Condition 9
Falcon Launcher - Condition 6
Forward Engine Mount - Condition 2F
Forward Engir. mount - Condition 5D
Forward Engine Mount - Condition 19F
Forward Engine Mount - Emergency Landing
Forward Engine Mount - Condition SE
Forward Engine Mount - Condition 5C
Aft Engine Mount - Condition 1910C
Aft Engine Mount - Condition 1804C
Towing Ring - Towing Conditicn
MLG Drag Strut Lug - Power Run-Up
MB-1 Ejection
Holsting ~ Forward Hoist Points
Hoisting - Aft Hoist Points

Jacking - Forward Jack Point

WADD TR 60-477

Test Date
2(; February 1959
28 Febsuary 1959
26 February 1559
28 February 1958
26 Fsbruary 193¢
2 March 1959
2 Maxchk 1959
3 March 1939
3 March 1959
4 March 1959
4 March 1959
5 March 1959
5 March 1959
6 March 1959
9 March 1939
9 March 1959
10 March 1959
11 March 1959
12 March 1959
12 March 1959
13 March 1959
18 March 1959
19 March 1959
20 Msrch 1959

23 March 1959

Percent
ult, LLoad
Supported

i00
100
160

el
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Percent

Test Ulr, Toad
Sequence F-1006A Test Condition Test Date Supported
102 MB-1 - Forward Crash 24 March 1959 100
103  Pylon and Tank - Condition 8 24 March 1959 100
1064  Pylon and Tank - Condition 12 25 March 1959 1G9
105 Pylon and Tank - Condition 9 25 March 1959 10V
106 Pylon and Tank - Condition 1504 26 March 1959 100
107 Main Landing Gear - Condition 1102B 3 April 1959 100
108  Jacking - Wing Fitting 7 April 1959 100
109  Fixed Inlet Ramp - Condition 7 21 April 1959 100
110  Fixed Inlet Ramp - Condition 1 23 April 1959 100
111  Variable Inlet Ramp - Condition 8 29 April 1959 100
112 Variable Inle. Ramp - Condition 7 1 May 1959 100
113 Variable Inlet Ramp - Condition 11(+) 4 May 1959 100
114 Ramp Forward Actuators - Condition 11F(-) 5 May 1959 100
115  Variable Inlet Ramp - Condition 11 (-) 6 May 1959 100
116  Ramp Aft Actuators - Condition 11A (-) 7 May 1959 100
117  Ramp Aft Actuators - Condition 7A 14 May 1959 100
118  Inlet Duct Pressurization 21 May 1959 100
(Approx.)

NOTE: A detailed description of the conditions listed above appears
in the appendix.

At the conclusion of the limit load portion of the Condition 1602 Test, two skin gap
probleras were noted. The skin gap at the aft end of the missile bay and the gap around
the fuselage main landing gear doors were found to be insufficient, with resulting skin
jarnming. "t was recommended that new skin gup tolerances be established for these
areas, with the existing maximum allowable gap established as th¢ new minimum gap.

Three attempts were made to complete Coudition 1704, In each case the test had to be
discontinued at as Jow a point as 50 percent ultimate load because of jamming of the in-
board edge of the elevons against the fusclage (refcrence Figure 10). In each case the

11




~ WAL TR 60477

overhanging skin of the inboard elevon rib flange wus shaved In an attemp? to gain the
proper clearance. This shaving wae ~ontinued until it waes undur the proper ed: disrance
for the inboard row of elevon rivets. At thig natng the Contractor advised locating another
row of rivers spaced between the existing riveta and the outhoard rib web approxim:zly
.25 inch . board of the rib web, This permitted shaving the rib flange &nd kin to the
original line of rivets. The test was conducted a fourth time and the structure satisfuc-
torily supported 100 percent ultimatc load with sufficient clearance existing at all times.
fmmediatcly after the tast the Contractor advisad WADD that all F-106 aircraft const:ruc-
tion would be similar to the static article, ‘.e., the inboard ¢levon rib flange and skin
would be ground down to the clearances required during the static test. This requirement
was called out in Convair Drawing Nr. 8-13380.

At some point above 90 percent, ultimate load for Condition 2502, the shear-carrying
elevon slip joint separated at the elevon trailing edge. The elevon coatinued to support
load and 1UO percent ultimste load was attained with no fallures at ary point. While
reducing the toad, the slip joint *hat had separated butted at the trailing edge separaticii
point instead of slipping back into place. This caused gkin cracking at the butting area
{reference Figuie 11). Elevon chordwise bending was determined to be the prime cause
of the separation and correction of it was investigated and found to be difficult. In view
of the high load level at the time of separation and the fact that load continued to be
supported, it was agreed that no corrective action would be required at this time.

At 95 percent altimate load for Condi.lon 3202, a sharp compression buckle in the wing
upper surface skin caus d rolling of the rib cap of the B.L.. 99.94 rib between Spars 6 and
7 (reference Figure 12). The rolling csused the rib cap web to crack immediately below,
and sometimes through, the rib cap flange-to-web fillet radius. The structure continued

to support load and the test was continwed to 100 percent ultimate load without further .

failure. The above mentioned crack sppeared betwoen lightening holes drilled very close
to the rib cap flange (refererce Figure 13). In some cases the hole actually cut into the
flange-web fillet radius. The holes were located in this manner for use as a Jower sur-
face rib cap fuel flow passage; the upper cap was similay because of symmetry and/or
cost reduction puzrpoees. It was recommended that these holes b2 moved down from the
cap fillet on future production airplanes and that the possibility of fatigue problems in the
existing configuration be investigated. The recommeuded production change was immedi-
stely {mplemented and details of this change may be found in Convair Drawing Nr. COR-
8-00139.

Service problems with the F-102 landing gear caused concern for the similarly designed
F-106 landing gear, and the poesibility of a future requirement for an increased strength
landing gear for the F~166. Before a redesigned gear could be installed, we must know the
strength level of the gear supporting structure in the wing. it was therefore decided to
conduct a destruction test for the landing condition that produced the most critical wing
loads. Por this particular test, the Contractor was to fabricate an overstrength dummy
landing gear with which to inv.roduce the loads. While the dummy gear was being designed,
the length of time involved in its design and fabrication prompted a decision to conduct
the test with the actual landing gear. This was based on the possibility that a wing failure
could occur before a gerr failure and thereby eliminate the necessity for the dummy gear.
Condition 1102B, a two-wheel tail down spring-back condition, was selocted for test

- because it produced very close to the maximum wing spar loads without overloading the

very critical landing gear side brace boss. At 135 percent ultimate load, the landing gear

12
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forward drag strut failed in compression causieg a number of secondary failures (ref-
erence Figures 14A through 14E). At this high load level the wing was still in excellent
condition. The very high strength level thereby demonsgtrated by the F-106 wing rade it
unnecessary to conduct further wing tests at that time.

CONCLUSIONS

It is concluded that the F-106A and B airplanes, with the modifications noted in the
Summazry of Results, are structurally capable of withstandirg the static ultimate loads
shown in the appendix. These I2ads include both the original and later increased design

gross weights as set forth in the appendix and also include all applicable temperature
considerations,

13
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APPENDIX

F-106 STRUCTURAL TEST CONDITIONS

(All parameters shown are limit conditions)

15
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TABLE 1
THERMAL CONDITIONS
NR DATE TEST CONDITION THERMAL CONDITION
1 10 July 58 19 }
2 24 July 58 2
3 31 July 58 19-B Engine Compartment heat
4 20 Aug 58 1806
5 3 Sept 58 1404B 1
6 11 Dec 58 1705 Limit 60* P, Dive-Wing heat
7 12 Dec 58 1705 Ultimate 69* P. Dive-Wingheat
8 17 Dec 58 1407 Limit Level flight acceleration, wing heat
9 17 Dec 58 1407 Ultimate Level flight acceleration, wing heat
10 & Feb 59 2502 Engine Compartment heat
11 19 Feb 59 3005 Eagine Compartment heat

16
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TABLE 2
SUMMARY OF FINAL (SOAK) ENGINE COMPARTMENT TEMPERATURE (F°"
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TABLE 3

FEST CONDITIONS (F-10b+)

T T T T
TEST ‘'n n, ' GROsS | Alu. 6
CONDITION ' Y ’ wT | tude .  radian 1z\dxamsZ radian
‘ i (bs) = (ft) MACH ' persec” . persec pri sec
. 3
T { 1]
1602 Steady state pull-up; ! i 1.0 129,776 7000 .23 !
dive brakes; no thrust. : ; | i '
! ; ! ' |
! § ‘ l
' t .
: | o
¢ | | |
t i 1 i
1610  Steady state pull-up; 7.0 029,776 0 [ 80
dive vrakes, no thrust | ' ' '
3
| | | |
1604 Accelerated pull-up; ) 7.0 . 29,776 . 28,000 1.10 ' -4.82
dive brakes; no thrust. ) '
1704  Steady state pull-up; 7.0 29,776 33,000 - 1.64
dive brakes; no thrust.
1407  Steady state pull-up. 5.33 23,988 41, 00¢ 2.0
1705  Steady state pull-up. 5.33 29,766 30, 000 1. 895
2502 Steady state pull-up; 7.0 30,590 9,000 123
dive brakes; no thrust !
3202 Steady siate pull-up; ‘7.6 33,119 8,000 1.20
dive brakes; no thrust
et
1904  Steady state push-over; -3 0 33,000 35, 332 1.755 oS
dive brakes: no thrust é
1806  Sready state push-over; <2.3 28,421 0 1 138 5
no dive brakes; thrust. i
3
1902 Steady state ash-over; -3.0 33,000 0 1,05 3,
no dive brakes, thrust .
A
1404  Steady state push-over; -1.8 28,755 [+] 1138
no dive brakes; thrust
3005 Steady state push-over, -2.3 29, 235 0 1 138
no dive brakes; thrust
5 Buank to bank roll; ro -1.09 5.0 28,421 0 . 80 212
dive brakes; thrust
15 Bank to hank roli; no . 251 3.90 28, 421 c 1.138 - 110
dive brakes, thrust
2 Zero g Roll; no dive -1 057 0 316 28,421 0 1 00 -0 135
brake, thrust
19 Lateral gust; no dive -1.387 1,00 25,600 ¢4 1 05 -.615
brakes, thrust
19B Lateral gust, dive 1 155 1.0 30,221 [ 1.05

brakes

* B denotes F-106B, all other conditions pertain to the F-1C86A

20




- WADD TR 60-477

TABLE 3}
TEST CONDITIONS (F-106%)
GROSS | Alti- ]
wT, tude radian radian radian CRITICAL AREAS
(1be) (fe) MACH | persec | persec per sec
.0 129,776 7000 1. 23 Wing tips in positive shear and
bending; wing spars 3,4,5,6,
and 7 in positive bending; Fuse-
lage Stations 102-140, 300-355,
472-5%93 in vertical shear; Fuse-
lage Stations 355-520 in nega-
tive bending.
.0 | 29,776 ] 80 Fuselage Stations 160-280 in
| vertical shear; Fuselage
Stations 120-316 in negative
bending; wing spars 2,3, aad 4
in positive bending
.0 [ 29,776 28, 000 1.10 -4.82 Fuselage Stations 80 & fwd in
positive bending; wing spars 6
and 7 in positive bending.
.0 | 29,776 33, 000 1. 64 Wing spars 3,4,5,6, 8 7 in
positive bending.
.33 23,988 41, 000 2.0 Wing "hot'' condition.
.33} 29,766 30, 00v 1. 895 Wing "hot'' condition.
.0 30, 590 9, 000 1. 23 Complete wing and fuselage aft
of Fuselage Stations 355.
.0 133,119 |, 8,000 1. 20 Wing and fwd fuselage
T
.0 | 33,000 | 35,332 1. 755 Wing spar 6 in negative bending
| |
.3 | 28,421 0 1.138 : Fuselage in verticat shear,
" . : Fuselage Stations 499-575,
: ! ) 615-660; wing spar 5 in nega-
: | ; ! i tive bending
! l ‘
.0 133,000 | 0 1.05 | Fuselage in positive bending
! ! Fuselare Stations 472-478;
! ; wing spar 4,5,6, & 7 in nega-
f i l tive bending.
1 i
.8 ‘ 28, 155 0 1.13¢e Fuselage in positive bending,
i ’ Fuselage Station 472-620
' 1
-3 129,235 | 0 1.138 Aft fuselage in positive bending
' !
.0 | 28,421 i 0 . 80 .2l2 i 1. 224 1. 604 Vertical {in bending
| |
.97 28,421 ’ 0 (1138 ¢ -. 110 : -1.133 Maximum rudder hinge moment.
| | ‘
.16 28,421 i 0 1.00 -0.135 : 1.547 8.076 ’ Aft fuselage in torsion, fin
; ! ; bending; wing spar 5 outboard
! : | negative bending.
: ! ;
.00 25,600 | 0 1 1.05 -1.615 | 7.647 } Fuselage side bending; vertical
! | i ' fin bending.
.0 | 30,221 0 1.95 | 1,378 -6.626 ' Fuselage side bending; vertical
; | i fin bending

‘ons pertain o the F-106A.
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TABLE 4

COMPONENTS TESTS (F-106B)
(Main Landing Gear)

Test n Gross Tail Oleo ‘ Vertical Drag Side
Condition 2 wt. Position Position Load Load Load
(1bs) VzfGear| Vx/Gear Vy/Gear
(lbs’ {lbs) 1lps)
Taxi 2.0 39, 505 - Static 35,985 0 : 0
i
Side drift 1.8 27, 564 - Fully 11,074 0 8, 859
extended invoard
Side drift 1.8 27,564 - Fully 11,074 0 6, 644
extended outboard
Side urift 1.8 27,564 - Fully 11,074 9,72 9, 689
extended forward outboard
-4,/ in.
Side drift 1.8 27,564 - Fully 11,074 8,526 8, 829
extended aft inboard
-4, 0 in.
Two-wheel | 2.6 27,564 | Level Fuliv 22,159 17,062 0
spin-up extended aft
-2.0in,
Two-wheel 12,89 | 27,564 | Down Fully 24, 798 6,943 0
spin-up extended aft
-2, 0 in.
Two-whee' |2.89 | 27,564 | Down Fully 24, 798 ] 6, ’ 6, 555
spin-up extended aft
! -6.0 in.
Two-wheel | 2.60 | 27,564 | Down Fully 21, 134 -18, 859 {
spring-back i extended
1 i -2 in.
!
; |
Two-wheel {2.6 27,564 | Down . Fully 21,134 -18, 859 4, 183
spring-back | extended : .
! <Tin. { !
! : i
Two-wheel ;1 0 | 39,505 - ! Static 29,630 | 23,703 .
braked roll ' :
Ground 10 1 39,565 ' - Static ' 25,945/ | . 12, 972/5, 029
turning i i 10,057
Pivoting | 1.0 { 39, 505 - Static 18,000 | Torque = 50, 835 1n. Ibs.
Jacking : 1.35 | 39,505 | - Static 24,300 | 7,200 ’L-v. 200
i i i
Local Fittings
i ! ' i ! ' Gear Load
Mooring po- - - - | - - 11, 500
ring @45° | } ; i : ‘
: H ] i
Towirg b ! - - - ! - ‘ - ' 7,370
ring ! ! ] ‘ ; ;
Power T - - 21, 070
run-uy | ' ‘

21
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TABLE 5
COMPONENTS TESTS (F-106B)
{Noee Landing Gear)
Test n Gross Oleo v, v v
Condition 2 wi. Position y
(lbs) {ibs) (lbs) (lbs)

Three-wheel 2.6 27, 564 Fully 11,782 2,945 -
max. strut extended
reactiop -1.0 in.
Three-wheel 2.56 27,564 Fully 6, 458 4,972 -
max. spin-up extended

-”.0 in,
Taree-wheel 2.56 27,564 Fully 6, 458 -4, 440 -
max. spring- extended
back -1.0 in.
Unsymmetri- 1.0 39,508 Static 6, 886 - 4, 184
cal
braking
Towing 1.0 39,505 Static 6,822 9, 265 -
aft
Towing 1.0 39,505 Static 6, 822 -9, 265 -
forward
Towing 1.0 39, 585 Static 6, 822 3,275 3,275
at 45*
aft

22
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TABLE 6

COMPONENTS TESTS

(ARMAMENT LAUNCHING GEAR)

n n LAUNCHING
THYT x s GEAR
CONDITION POSITION
! Max. vartical inertia {falcon) 7.0 Retracted
1 Forward crash (falcon) 5. 33 Retracted
(ultimate)*
6 2 miuniles on crossbri’ge, Down
firad, and about to leave
launch railes (falcon)
TA 2 missiles on crossbridge, Down
i no missile thrust (falcon)
\
1 2 missiles on crossbridge, Down
just fired, with thrust (falcon)
9 Forward installation, Down
righthand missile only,
just fired (falcon)
Ejection loads (MB-1)
Forward crash (MB-1) 5.33
(ultimate)*

» Ultimate loads are compression (-), tension (+).
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TABLE 10
COMPONENTS TESTS (F-106A)
(CONTROL SYSTEMS)
TEST LOQ/
CONDITION POSITION (LBS) UL
7 Rudder, load reacted at Neutral 450
servo valve stops
8 Rudder, load applied to lefthand Full right 450
pedal and reacted at servo valve stops
9 Rudder, load applied to lefthand pedal Full left 450
and reacted at rudder system stope
Rudder, feel system, pressure supplied 2250 ps
to cylinder, pilot effort loads applied to ultimat
pedal
2 Elevator, control Elevator full up, stick forward 350 ard
3 Elevator, surfaces Elevator full down, stick aft, 350 ¢,
pressure off
4 Elevator, actuators, Elevator full up, stick aft, 350
pressure on
S Elevator, surfaces Elevator full down, stick forward 350 rwar
1 Elevator (feel system) Elevator neutral 15 pai !
3a Elevator, trim jack {feel system) Full down, stick aft 15 psi{
balance
stick)
3b Elevator, trim (feel system) Full up, stick forward -5 pail
balance
stick)
2 Afleron Extreme right aileron, stick left 150, dclef
pressu;
3 Alleron, 1oad reactad at gservo Extreme left aileron, stick right 150, mdgh
valve stops pressu
4 Aileron, system, load reacted Extreme travel 150
by system stops
1 Throttle (power system), load Off 75
reacted at fuel cuontrol (Fuscli.ge
Station 526. 25) or at lever quadrant
stops
2 Throttle (power system), load Half on 75
reacted at fuel control (Fuselage
Station 526, 28) or at lever quadrant
stops
3 Throttle (power system), load Full on 75
reacted at fuel control (Fuselage
Station 526. 25) or at lever quadrant
stops
Brake (pedal toes), load applied Mid-adjust of rudder bars 450
to each toe simultaneously




TABLE 10

COMPONENTS TESTS (F-106A)
(CONTROL SYSTEMS)

TEST LOf LOAD
CONDITION POSITION (LBS) UL (LBS) ULTIMATE
der, load reacted at Neutral 450 450
/0 valve stops
der, load applied to lefthand Full right 450 450
il and reacted at servo valve stops
der, load applied to lefthand pedal Full left 450 450
reacted at rudder system stops
der, feel system, pressure supplied 2250 pe 2250 psi pressure
ylinder, pilot effort loads applied to ultimat ultimate*
al
vator, control Elevator full up, stick forward 350 arxd 350
vator, surfaces Elevator full down, stick aft, 350 ¢, 350
pressure off
vator, actuators, Elevator fuil up, stick aft, 350 350
pressure on
vator, surfaces Elevator full down, stick forward 350 rward 350
vator (feel system) Elevator neutral 15 pei | 15 pei (cylinder)
vator, trim jack (feel system) Full down, stick aft 15 psi | 15 pei (cylinder,
balance balances load on
stick) stick)
vator, trim (feel system) Full up, stick forward 15 psi ! 15 pei (cylinder,
balanee balances load on
stick) stick)
eron Extreme right aileron, stick left 150, ixleft 150, no actuator
pressw pressure
eron, 1oad reacted at servo Extreme left aileron, stick right 150, meight 150, no actuator
ve stops pressu: pressure
eron, system, load reacted Extreme travel 150 150
system stops
rottle (power system), load off 15 15
icted at fuel control (Fusciage
tion 526. 25) or at lever quadrant
'P.
rottle (power system), load Half on 75 75
icted at fuel control (Fuselage
ition 526. 28) or at lever quadrant
)P.
rottle (power system), load Full on 75 75
acted at fuel control (Fauselage
ition 526, 28) or at lever quadrant
ps
Mid-adjuut of rudder bars 450 450

ake (pedal toes), load applied
each toe simultansously
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